INTRODUCTION
The Chinese military is currently undergoing a major renovation with the development and introduction of new weapon systems such as the Type 094 SSBN and the J-10 fighter aircraft. Part of this major facelift, aimed at making the Chinese military a more streamlined, modern, and capable force, is directed at the ground-based air defense network. Until advanced Russian-made S-300P family SAM systems were introduced in the 1990s, the primary strategic SAM system was the aging HQ-2 (CSA-1 GUIDELINE), a copy of the technologically ancient Soviet-era S-75 (SA-2 GUIDELINE). The introduction of the S-300P has provided China with a modern, robust SAM system capable of dealing with 21st century airborne threat systems, but the desire to produce a native system was still present. That system was the HQ-9.
THE HQ-9
The HQ-9 is a modern mobile strategic SAM system roughly analogous to the Russian-made S-300PMU (SA-10B GRUMBLE). The HQ-9 has a range of 100 kilometers, an increase over the S-300PMU's 90 kilometer maximum range but less than that of the S-300PMU-1's 150 kilometers. The containerized missiles are carried in groups of four on the back of wheeled TELs very similar in design to that of the S-300P's 5P85. Target prosecution is handled by the HT-233 phased-array radar system, mounted on a wheeled chassis in a configuration very similar to that employed by the S-300PMU, which mounts the 30N6 (FLAP LID) engagement radar on a MAZ-7910 chassis. The HT-233 radar is likely capable of engaging multiple targets thanks to its phased-array construction.
The similarities between the S-300PMU components and the HQ-9 components may be the result of a limited reverse-engineering effort. China had no prior experience in developing a modern, high-performance strategic SAM system, and it is likely that the S-300P was examined as either a possible starting point or at the very least a general roadmap for component design. Espionage efforts may have aided the development effort as well, as the HT-233's radar array bears some similarities to the MIM-104 PATRIOT's AN/MPQ-53 phased-array radar. Were the HQ-9 to be an amalgamation of S-300PMU and PATRIOT technology, it would have to be regarded as a very formidable weapon system, although there is no reason to doubt the system's effectiveness were this not to be the case.
Trials of the HQ-9 were conducted at the Shuangchengzi SAM test range located in north-central China.
The following image depicts the HQ-9 test facility at Shuangchengzi:
HQ-9 production appears to take place at a facility located southwest of Beijing at 39 47' 22.62" N 116 09' 28.40" E. What would appear to be a complete HQ-9 battery is located on a pad at this facility, probably undergoing system checkout and calibration before the battery is deployed to an operational site.
The following image depicts an HQ-9 battery undergoing probable system checkout:
HT-233 radar development may have also taken place at the Beijing facility. The facility appears to house an RCS range. The presence of an RCS range and HT-233 radar vehicles indicates that this facility may be used for radar development as well as HQ-9 production.
The following image depicts three HT-233 TERs at the Beijing facility:
A TYPICAL HQ-9 SITE
A typical HQ-9 site will consist of a raised central berm for the HT-233 engagement radar, surrounded by four prepared pads upon which the TELs will be deployed. A pad is located next to the HT-233 berm, likely housing generators or command and control facilities. A circular path surrounds the main complex, containing the TEL pads and the engagement radar position. A second raised berm is situated outside this circular path, likely intended to mount an early warning radar of some sort. The one inconsistency in identified active HQ-9 sites is the presence or lack of additional structures housing various pieces of support equipment. This includes a vehicle situated between the TELs, which probably serves as a control vehicle for two TELs in much the same way that the "Master" 5P85S TEL is used to control 5P85D "Slave" TELs in an S-300P battery. System components of an HQ-9 battery are linked via cable connections.
The following image depicts an occupied HQ-9 site outside Beijing:
HQ-9 SITE LAYOUT VS S-300P SITE LAYOUT
Identifying HQ-9 sites in imagery can be a confusing task. The system components share similarities with those of the S-300P family, and the site layout is very similar to that of the S-300P systems based in China and other nations across the globe. In order to avoid misidentification of a given site, it is important to be mindful of the identifiable differences in the layouts of HQ-9 and S-300P sites.
The first obvious difference is the presence of the control vehicle between the HQ-9 TELs. This feature is absent in an S-300P battery. It is not important, however, to go to this level of detail to differentiate between HQ-9 and S-300P facilities.
The second identifiable difference between an S-300P and an HQ-9 site is the shape of the TEL pads. The following two images depict unoccupied HQ-9 and S-300P sites located in China. Note the rectangular shaped pads provided for the HQ-9 TELs, compared to the pie-shaped pads provided for the S-300P TELs.
The following image depicts an unoccupied HQ-9 site:
The following image depicts an unoccupied S-300P site:
Given proper attention to detail and a working knowledge of the characteristics of each SAM site, it can be seen that it is possible to differentiate between HQ-9 and S-300P facilities without having to discern differences between individual system components. Furthermore, it has been demonstrated that it is possible to effectively identify unoccupied facilities with a high degree of precision.
SYSTEM COVERAGE
The HQ-9's 100 kilometer range and multiple target engagement capability means that fewer SAM sites are now required to defend a given portion of airspace.
The following image depicts the coverage provided by an HQ-9 site situated north of Beijing. Note the much smaller coverage areas provided by the four HQ-2 sites in the same region.
CURRENT USERS
The only current user of the HQ-9 strategic SAM system is China. There are currently three HQ-9 sites located at the following coordinates:
34 37' 14.21" N 108 42' 23.62" E (Active)
40 21' 20.79" N 116 41' 01.81" E (Active)
36 32' 14.19" N 104 08' 34.30" E (Unoccupied)
SOURCES
-Jane's Land Based Air Defense 2002-03
-All satellite imagery provided courtesy of Google Earth
The Chinese military is currently undergoing a major renovation with the development and introduction of new weapon systems such as the Type 094 SSBN and the J-10 fighter aircraft. Part of this major facelift, aimed at making the Chinese military a more streamlined, modern, and capable force, is directed at the ground-based air defense network. Until advanced Russian-made S-300P family SAM systems were introduced in the 1990s, the primary strategic SAM system was the aging HQ-2 (CSA-1 GUIDELINE), a copy of the technologically ancient Soviet-era S-75 (SA-2 GUIDELINE). The introduction of the S-300P has provided China with a modern, robust SAM system capable of dealing with 21st century airborne threat systems, but the desire to produce a native system was still present. That system was the HQ-9.
THE HQ-9
The HQ-9 is a modern mobile strategic SAM system roughly analogous to the Russian-made S-300PMU (SA-10B GRUMBLE). The HQ-9 has a range of 100 kilometers, an increase over the S-300PMU's 90 kilometer maximum range but less than that of the S-300PMU-1's 150 kilometers. The containerized missiles are carried in groups of four on the back of wheeled TELs very similar in design to that of the S-300P's 5P85. Target prosecution is handled by the HT-233 phased-array radar system, mounted on a wheeled chassis in a configuration very similar to that employed by the S-300PMU, which mounts the 30N6 (FLAP LID) engagement radar on a MAZ-7910 chassis. The HT-233 radar is likely capable of engaging multiple targets thanks to its phased-array construction.
The similarities between the S-300PMU components and the HQ-9 components may be the result of a limited reverse-engineering effort. China had no prior experience in developing a modern, high-performance strategic SAM system, and it is likely that the S-300P was examined as either a possible starting point or at the very least a general roadmap for component design. Espionage efforts may have aided the development effort as well, as the HT-233's radar array bears some similarities to the MIM-104 PATRIOT's AN/MPQ-53 phased-array radar. Were the HQ-9 to be an amalgamation of S-300PMU and PATRIOT technology, it would have to be regarded as a very formidable weapon system, although there is no reason to doubt the system's effectiveness were this not to be the case.
Trials of the HQ-9 were conducted at the Shuangchengzi SAM test range located in north-central China.
The following image depicts the HQ-9 test facility at Shuangchengzi:
HQ-9 production appears to take place at a facility located southwest of Beijing at 39 47' 22.62" N 116 09' 28.40" E. What would appear to be a complete HQ-9 battery is located on a pad at this facility, probably undergoing system checkout and calibration before the battery is deployed to an operational site.
The following image depicts an HQ-9 battery undergoing probable system checkout:
HT-233 radar development may have also taken place at the Beijing facility. The facility appears to house an RCS range. The presence of an RCS range and HT-233 radar vehicles indicates that this facility may be used for radar development as well as HQ-9 production.
The following image depicts three HT-233 TERs at the Beijing facility:
A TYPICAL HQ-9 SITE
A typical HQ-9 site will consist of a raised central berm for the HT-233 engagement radar, surrounded by four prepared pads upon which the TELs will be deployed. A pad is located next to the HT-233 berm, likely housing generators or command and control facilities. A circular path surrounds the main complex, containing the TEL pads and the engagement radar position. A second raised berm is situated outside this circular path, likely intended to mount an early warning radar of some sort. The one inconsistency in identified active HQ-9 sites is the presence or lack of additional structures housing various pieces of support equipment. This includes a vehicle situated between the TELs, which probably serves as a control vehicle for two TELs in much the same way that the "Master" 5P85S TEL is used to control 5P85D "Slave" TELs in an S-300P battery. System components of an HQ-9 battery are linked via cable connections.
The following image depicts an occupied HQ-9 site outside Beijing:
HQ-9 SITE LAYOUT VS S-300P SITE LAYOUT
Identifying HQ-9 sites in imagery can be a confusing task. The system components share similarities with those of the S-300P family, and the site layout is very similar to that of the S-300P systems based in China and other nations across the globe. In order to avoid misidentification of a given site, it is important to be mindful of the identifiable differences in the layouts of HQ-9 and S-300P sites.
The first obvious difference is the presence of the control vehicle between the HQ-9 TELs. This feature is absent in an S-300P battery. It is not important, however, to go to this level of detail to differentiate between HQ-9 and S-300P facilities.
The second identifiable difference between an S-300P and an HQ-9 site is the shape of the TEL pads. The following two images depict unoccupied HQ-9 and S-300P sites located in China. Note the rectangular shaped pads provided for the HQ-9 TELs, compared to the pie-shaped pads provided for the S-300P TELs.
The following image depicts an unoccupied HQ-9 site:
The following image depicts an unoccupied S-300P site:
Given proper attention to detail and a working knowledge of the characteristics of each SAM site, it can be seen that it is possible to differentiate between HQ-9 and S-300P facilities without having to discern differences between individual system components. Furthermore, it has been demonstrated that it is possible to effectively identify unoccupied facilities with a high degree of precision.
SYSTEM COVERAGE
The HQ-9's 100 kilometer range and multiple target engagement capability means that fewer SAM sites are now required to defend a given portion of airspace.
The following image depicts the coverage provided by an HQ-9 site situated north of Beijing. Note the much smaller coverage areas provided by the four HQ-2 sites in the same region.
CURRENT USERS
The only current user of the HQ-9 strategic SAM system is China. There are currently three HQ-9 sites located at the following coordinates:
34 37' 14.21" N 108 42' 23.62" E (Active)
40 21' 20.79" N 116 41' 01.81" E (Active)
36 32' 14.19" N 104 08' 34.30" E (Unoccupied)
SOURCES
-Jane's Land Based Air Defense 2002-03
-All satellite imagery provided courtesy of Google Earth
An Indian superficial analysis...huh!!
ReplyDeleteI'm not sure what the HQ-9 has to do with India exactly, apart from the possibility of a Pakistani purchase for strategic air defense which was addressed in a previous posting.
ReplyDeleteHello Sean, thank you for your interesting blog. I'd like to see an entry about the israeli raid against the alledged nuclear reactor in Syria, what do you think? The ISIS Institute has published a PDF with sat images.
ReplyDeleteThanks.
one more site located near Nanjing: N31 36 16 E118 59 57.
ReplyDeleteThat one is an HQ-2 site being converted, but there are no HQ-9 components located there as of yet. You can still see four HQ-2 launch rails on the western HQ-9 TEL pad.
ReplyDelete